Stable Projective Homotopy Theory of Modules, Tails, and Koszul Duality

نویسندگان

  • ROBERTO MARTÍNEZ VILLA
  • ALEX MARTSINKOVSKY
چکیده

A contravariant functor is constructed from the stable projective homotopy theory of finitely generated graded modules over a finite-dimensional algebra to the derived category of its Yoneda algebra modulo finite complexes of modules of finite length. If the algebra is Koszul with a noetherian Yoneda algebra, then the constructed functor is a duality between triangulated categories. If the algebra is self-injective, then stable homotopy theory specializes trivially to stable module theory. In particular, for an exterior algebra the constructed duality specializes to (a contravariant analog of) the BernsteinGelfand-Gelfand correspondence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operadic Koszul Duality

1. OPERADS Our goal in this talk is to give a sort of categorified version of “Koszul duality”. One of the primary motivations for us to do so is to take the classical results about Koszul duality, which form a convoluted and complex body of literature, and stretch them apart to see which assumptions power which parts of the theory. Classically, Koszul duality results are concerned chiefly with...

متن کامل

Bar-cobar Duality for Operads in Stable Homotopy Theory

We extend bar-cobar duality, defined for operads of chain complexes by Getzler and Jones, to operads of spectra in the sense of stable homotopy theory. Our main result is the existence of a Quillen equivalence between the category of reduced operads of spectra (with the projective model structure) and a new model for the homotopy theory of cooperads of spectra. The crucial construction is of a ...

متن کامل

Koszul Algebras and Sheaves over Projective Space

We are going to show that the sheafication of graded Koszul modules KΓ over Γn = K [x0, x1...xn] form an important subcategory ∧ KΓ of the coherents sheaves on projective space, Coh(P n). One reason is that any coherent sheave over P n belongs to ∧ KΓup to shift. More importantly, the category KΓ allows a concept of almost split sequence obtained by exploiting Koszul duality between graded Kosz...

متن کامل

Koszul Duality for Stratified Algebras Ii. Standardly Stratified Algebras

We give a complete picture of the interaction between Koszul and Ringel dualities for graded standardly stratified algebras (in the sense of Cline, Parshall and Scott) admitting linear tilting (co)resolutions of standard and proper costandard modules. We single out a certain class of graded standardly stratified algebras imposing the condition that standard filtrations of projective modules are...

متن کامل

The Homotopy Category of Complexes of Projective Modules

The homotopy category of complexes of projective left-modules over any reasonably nice ring is proved to be a compactly generated triangulated category, and a duality is given between its subcategory of compact objects and the finite derived category of right-modules.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009